Разгонный потенциал
Два самых способных ядра ускоряются до 5,3 ГГц вместе с однопоточной нагрузкой, создаваемой посредством бенчмарка 7-Zip. А вот остальные — максимум до 5,1 ГГц.
С двумя потоками увидеть 5,3 ГГц можно сильно реже, справедливее говорить уже именно про 5,1 ГГц для ядер, занимающихся вычислениями. При этом такая частота достигается буквально на каждом, но всё, как и всегда, зависит от Windows (10).
Переход к четырём потокам понижает частоту на ядрах до 4,8–4,9 ГГц, отобранные (и только они) ускоряются до 5,1 ГГц, но не всегда.
С шестью потоками цифры понижаются уже ровно до 4,8 ГГц, а на двух лучших изредка видны 4,9 ГГц.
Окончательно частота стабилизируется на 4,8 ГГц с восемью потоками или большим их числом.
Начальные настройки выглядели следующим образом:
В ходе различных тестов фиксировалось множество системных переменных в HWiNFO64, данные доступны для анализа на скриншотах ниже. Без специальных «прогревочных» сценариев говорить о высоких температурах повода нет: при рендеринге уровень составил 67 градусов, тогда как в CS:GO был едва достигнут порог 51 °C, да и то лишь на одном из ядер.
Рендеринг изображений вполне может претендовать на роль типичной и сложной нагрузки для оценки уровня температур, но переключимся на специализированные утилиты. Наиболее скромную нагрузку будем создавать посредством Prime95 (Version 30.3 build 6) в режиме Blend с деактивированной поддержкой AVX. С ней картина событий остаётся прежней. Подключение LinX с большим объёмом задачи в раз меняет обстановку, вся система оказывается на грани перегрева (а местами уже и за — на Core 3). Прирост производительности в Гфлопс очень впечатляет. Меньшую температуру мы видели в прошлой главе, когда использовали стресс-тест AIDA64 лишь с начальным AVX. Роль убийцы досталась профилю Small FFTs из Prime95 с активной поддержкой AVX всех видов. Меньше минуты и Core 3 вместе с Core 5 пали под натиском троттлинга. Разницу между CPU Package Power во всех сценариях можете сопоставить самостоятельно.
Посмотрим на пределы потребления энергии: в простое уровень снижался до 55 Вт, а нагрузка сопровождалась пиковыми 256, 362 и 393 Вт. В последнем случае, очевидно, выхода «на режим» фактически так и не случилось.
Использование профиля XMP сопровождается повышением SA Voltage до небывалых прежде 1,3 В, а для IO 2 уровень фактически совпадает с величиной DRAM — 1,36 В. А вот форсаж IO не состоялся, величина фактически приобрела роль второстепенной.
Память ускорилась и на поведение ядер процессора в зависимости от сложности нагрузки это не повлияло — частота повышалась, как и прежде. Рост производительности заметен в 7-Zip, а в Cinebench R23 он формален.
Blend without AVX (Prime95) и упрощённый тест стабильности системы AIDA64 FPU (без AVX-512) не увеличили температуру процессора. Уже в LinX виден заметный прирост продуктивности, вследствие чего Core i9-11900K стал греться больше и оттого троттлинг активировался быстрее и агрессивнее. Полноценный пресет FPU (уже с поддержкой AVX-512) или сценарий Small FFTs разогревали ЦП до критических отметок за считанные секунды.
Рост напряжений привёл к увеличению до 64 Вт характерной для простоя цифры. Предельными значениями потребления для каждого из режимов стали соответственно 272, 385, 287, 376 и 403 Вт. Что тут сказать, второе гнездо для питания CPU на плате распаяно не только для азотных экспериментов.
Как видим, в некоторых стресс-тестах «запаса» для разгона ЦП нет совершенно, но в более простых сценариях вполне можно что-то предпринять. Посмотрим, как на всё это смотрят инженеры в MSI. Как и раньше, имеется разгонный профиль с говорящим названием Game Boost (речь ни про какие стресс-нагрузки не идёт). Подход относительно продуктов на базе Intel Z490 совершенно не изменился: отключается замедление процессорного вентилятора (в нашем случае это ничего не меняет), напряжение фиксируется на уровне 1,375 В, режим ЦП подразумевает прирост 100 МГц для каждого из ядер в Turbo Boost. Как видно со скриншотов, XMP оставался активным после прошлого цикла тестов.
Идея интересная, но, к сожалению, неработоспособная. Даже до Рабочего Стола Windows 10 дойти не вышло, очевидно, для пиковых 5,4 ГГц подобного уровня напряжения маловато, до многопоточных тестов дело просто не дошло. Допускаю, что в будущем здесь перейдут на добавочную величину напряжения как к очевидному пути к успеху.
Проверим сами, работает ли этот механизм в задаче по поиску предельной частоты всех ядер ЦП, когда на роль индикатора стабильности призвать Cinebench R23, а именно шесть подряд проходов. В итоге получилось выйти на стабильные 5156 МГц, при этом фактически от платы ничего не потребовалось, прибавка 0,01 В выглядит символичной. Добавочные напряжения фиксировались мной в базовом виде чтобы исключить нежелательный рост температуры и выделяемого тепла. Что же, очевидно, инженеры подготовили плату к такому развитию событий, заранее предопределив необходимый уровень напряжения и подобрав нужный профиль LLC. Уход от базовых 100 МГц привёл к снижению CL, что и прежде наблюдалось на платах MSI, вмешиваться я не стал.
Есть ли частотный «запас» у процессора? Для несложной нагрузки, как мы видим, он присутствует, к тому же разгон был полностью синхронным для всех ядер, а ведь в таком случае мы упираемся в наиболее неудачное. К сожалению, переход к индивидуальным настройкам вряд ли даст много, ведь множители до сих пор целые, а не дроблённые до четверти, как у процессоров AMD. Потребуется заметно лучший, сразу на целых 100 МГц (или около того), потенциал хотя бы у одного ядра, и это в монолитном кристалле, но кто знает, быть может, удача кому-то и улыбнётся, тем более все они греются по-разному, разбег в пике здесь составил девять градусов.
Разобравшись с рендерингом, переключим фокус внимания на игровые конфигурации и займёмся разгоном до максимальных частот у ядер, используя динамический множитель. К сожалению, на финальной сборке 1.00 этот механизм оказался напрочь неработоспособным, установки в UEFI фактически игнорировались, здесь помогла тестовая сборка микрокода 1.0H, где подобных проблем не было.
Предполагаю, что работы в этом направлении далеки от финальных, но всё же результат получился неплохим. Основной проблемой стала величина напряжения ЦП и влияние на неё профилей LLC. Для максимального роста частоты при небольшом числе потоков, очевидно, требуется большее напряжение, но этого добиться мне так и не удалось, как не менял я настройки. В итоге с Mode 8 самым большим напряжение становилось при четырёх или трёх потоках, потому получить абсолютный максимум на одном–двух не вышло. Финальная комбинация множителей имеет вид 54-54-53-53-53-52-52-52. Добавочный уровень напряжения — (+) 0,08 В. Игровой уклон сценария подразумевает и ускоренную память, потому она работала по схеме XMP, со всеми отягощающими цифрами добавочных напряжений, которые не благоволят снижению рабочих температур.
Коротко опишу методику подбора множителей. Тестовый сценарий — Prime 95 по схеме Blend without AVX. По первому (54) и последнему (52) множителю определялся коридор рабочих частот, выбирался соответственно один и восемь рабочих потоков. По ним подгонялось напряжение, необходимое и достаточное, о нюансе с тремя и четырьмя потоками я уже выше написал. Определив коридор, необходимо добиться стабильной (хотя бы в первом приближении) работы ПК с разным числом потоков, меняя множители поочерёдно. Начиная уже с двух рабочих потоков величина частоты может зависеть от смежных с третьим и даже четвёртым по счёту числом в схеме (и дальше в том же ключе). Право определить тестовый сценарий у каждого своё, здесь нет никаких правил. Разумеется, про тесты с AVX здесь придётся забыть и компенсирующие множители вряд ли перекроют существенный рост напряжения процессора, а его снижение в зависимости от типа нагрузки до сих пор (почему-то) не придумали.
Поскольку идея закладывалась для игр, то с них и начнём. Да, в простое фигурируют пугающие 1,58 В и было бы неплохо от этого избавиться, однако при нагрузке они существенно снижаются. Уже с лёгким бенчмарком CS:GO это отчётливо видно (по средней величине Vcore), а переход к игре посложнее, примером была выбрана SOTTR (демоверсия), можно заявить про падение более чем на десятую вольта. Вряд ли все эти цифры оправданны, но ничего лучшего добиться от преобразователя у меня на тестовой сборке не вышло, а всё из-за казуса с тремя–четырьмя потоками. Исправив его, можно будет иначе подойти к подобру LLC и его комбинации со стартовым (для последующего понижения) напряжением. Здесь же нагрев процессора не вызывает совершенно никаких опасений, забавно, что в CS:GO он был даже выше, а всё из-за большего уровня Vcore.
Архивация с любым числом потоков проходит без проблем (нет сбоев, нет перегрева). Чего-то большего здесь уже не добиться, Cinebench R15 (он заметно проще R23) уже на третьем проходе доводит ЦП до троттлинга, тут речь про использование всех доступных потоков, с однопоточным сценарием, конечно же, таких проблем нет. Prime95 Blend without AVX греет процессор максимум до 84 градусов с максимальным числом используемых потоков, но лишь в первом каскаде тестов, а дальше троттлинг не заставит себя ждать. Подводя короткий итог, отмечу: частотный потенциал Core i9-11900K фактически не отличим от процессоров из прошлого поколения Comet Lake-S. Очевидно, кристаллы проходят отбор, лучшие — для наиболее дорогой модели, а менее удачные отправляются под крышку более дешёвых Core i7.
Сравним потребление ПК в Prime95, сопоставив его с режимом активного XMP. Парадокс, но в простое цифры совпали — 64 Вт. Для первого каскада тестов пределом были 233 Вт, а здесь они сменились на 394 Вт. Думаю, комментарии тут излишни. Если вы не боретесь буквально за каждый балл бенчмарка / fps — вряд ли игра стоит свеч.
Вернёмся к финальной прошивке и по проверенной годами схеме с фиксированием множителя и напряжения разгоним наш ЦП. Уверенный частотный его предел уже известен по испытаниям с Cinebench R23, здесь нужно добиться необходимого и достаточного для этого напряжения, а также подобрать значение компенсирующего множителя для наиболее тяжёлой нагрузки в лице векторных инструкций AVX-512. Необходимо сразу выбрать тестовый сценарий, и я остановился на самом лояльном к системе LinX (в нашем случае это тождественно равно менее греющему процессор, чем прочие программы). Таким образом, проблем не было с «-5». Без сюрпризов наиболее подходящим профилем LLC оказался Mode 3. Установка напряжения затребовала 1,38 В. Здесь же я провёл поиски стабильной частоты Uncore, не требующей особых мер, то есть с базовыми отметками вторичных напряжений, итоговое число — 99,1x45=4459 МГц. С множителем x46 (и больше) система наглухо уходит «в себя» и только ручной сброс настроек CMOS может ей помочь. Потому призываю почаще сохранять настройки куда-то на flash-накопитель (здесь может пригодиться и комплектный), чтобы проведение экспериментов не затягивалось ещё и постоянным внесением изменений вручную, с нуля.
Греть привычных 20 минут смысла не было, поскольку всё же одно из ядер уже за пять проходов в LinX дошло до 100 градусов, тем самым, активировав троттлинг, хотя AIDA64 (по датчику CPU) на это среагировать не успела (напомню, в HWiNFO64 устанавливался уменьшенный период опроса сенсоров, равный 0,5 сек). Пресет AVX для сценария FPU привёл к росту температуры ЦП до пиковых 93 градусов, само собой, с AVX-512 был перегрев. Для Prime95 в режиме Blend without AVX по температуре запаса ещё больше, не говоря уже про более простое ПО и игры в особенности.
Энергопотребление в простое равнялось 70–71 Вт. Нагрузка приводила к росту до 365, 365 и 361 Вт. Во втором случае справедливо говорить про уровень меньше, чем 350 Вт, если не обращать внимание на разовый всплеск, вызванный активацией режима 3D у ВК. Рост частоты и особенно напряжения сильно повлиял на рост цифр для тестов с AVX, а вот для LinX и AVX-512, когда происходила корректировка частоты, существенных изменений нет.
Стабилизатор славно выполнял свои функции, колебания величины процессорного напряжения не превысили даже 0,01 В, приходится говорить лишь о сотых вольта. В ходе всех испытаний комнатная температура была в пределах 24 °C. О температуре стабилизатора можно судить самостоятельно по датчику MOS на приведённых скриншотах. Замеры пирометром сопряжены с трудностями из-за прямой недоступности для анализа наиболее греющихся участков, рядом с ними температура оказалась ниже, чем фиксировал датчик. В любом случае, «запаса» мощности тут с избытом для любых экспериментов и про какие-то перегревы речь вообще не заходит.
Разгон ОЗУ теперь сложнее, чем прежде, а всё дело в делителе для КП. В тестах с начальной частотой ОЗУ и с применением XMP речь про форсаж делителя не шла, а с ним латентность становится ещё хуже. Насколько этот момент критичен для отдельных приложений — решает как всегда пользователь. Готовый разгонный профиль для чипов Samsung B-die, которыми располагает наш комплект, сулит привлекательную комбинацию из 4000 МГц, CL14 и достаточно скромных 1,5 В. Сперва я предположил, что он рассчитан на самые лучшие наборы, но удивился беспроблемному применению в составе MEG Z590 Ace. Gear 2 оказался форсирован, а ручной перевод к Gear 1 погружал плату «в себя». При разгоне ОЗУ настройки часто приводят систему к невозможности пуска и отработки POST. Изучим добавочные напряжения: SA вырос до пугающих 1,35 В (напомню, штатная величина равна 0,85 В), а IO 2 повысился до 1,46 В (базовый уровень — 1 В). Ещё можно полностью убедиться в отвязке от процесса IO Voltage (без индекса).
Система функционировала без видимых проблем, глубокие тесты я отложил на потом, поскольку назвать 50,9 нс удовлетворительным результатом разгона мне было сложно.
Итак, решено, что основные усилия будут приложены к поиску предельной схемы работы без делителя для КП, словом, всё это мы уже проходили совсем недавно — вместе с процессорами на сокете AM4. Шокирующая реальность привела к предельным 3600 МГц. Какие-либо послабления по задержкам и небывалое завышение вспомогательных напряжений ничего не давали, система попросту не запускалась (не проходила этап POST). Снижение CL завершилось на отметке 13. Работа возможна и с 12, но здесь мы напрямую упираемся в качество комплекта оперативной памяти, а небольшой выход за границу 1,5 В на модулях полной стабильности не давал. Ещё интересно, что CR со значением «1» получается фактически бесплатным — переключение безболезненно проходит уже после отстройки всех компонентов с «2». Итоговая схема — 13-13-13-28-1Т и в самом конце, без изменения напряжений, подтянут RFC до 240. На модулях действовали 1,488 В (установка шла на чуть более низком уровне), SA — 1,2 В, IO 2 — 1,41 В (при установке 1,4 В). После того, как стабильность работы памяти была подтверждена, я добавил x45 в качестве множителя Uncore, и занялся настройкой работы процессора. Идеей была максимальная частота узлов для сценария LinX без активации троттлинга. Здесь у каждого будет своя тактика, а у меня получилось следующее: напряжение ЦП — 1,44 В, LLC – Mode 6, основной множитель — x51, а для AVX-512 снижать его придётся на «-3». С такими настройками мы получаем разогнанную память, ядра и стабильную систему во многих тестах, отбрасывая те, где ЦП уходил в троттлинг уже с базовыми установками.
Система получила солидную прибавку продуктивности, выражаемую в Гфлопс, пройдя буквально по краю от перегрева, но так и было задумано — предельный разгон. Всё что удалось добиться — 44,1 нс. На фоне 52,2 нс с профилем XMP это, конечно, интереснее, или чуть сниженных до 50,9 нс с готовым агрессивным профилем для Samsung B-die, однако совсем не то, что было «раньше». Очевидно, КП переработан и это трудно не заметить. Само собой, скорости записи и чтения тоже невысоки, не такие, как мы привыкли видеть на 4+ ГГц. Что же из этого более важно для игр или других случаев — латентность или же линейные скорости — нам всем только предстоит изучить в будущем. Однако по итогам сегодняшних экспериментов можно сказать — комплекты на Samsung B-die и платформа Intel уже точно не синоним образцового разгона подсистемы памяти, поскольку ничего лучше 4 ГГц добиться я не смог даже с Gear 2.
Высокие фиксированные напряжения привели к небывалым 82 Вт в простое, а предел потребления выглядит очень знакомо — 367 Вт.
Все ли сюрпризы на сегодня? А вот и нет. Разгон по базовой также претерпел изменения. Прежде был пункт FCLK, принимающий значение 400 МГц при экспериментах с увеличением BCLK (в подавляющем большинстве случаев — автоматически), но теперь он исчез. Словом, переработки налицо. Лёгкие 360+ МГц (практически) на всех платах остались в истории, здесь я кое-как добрался до 250 МГц, оставив настройки из прошлой рубрики без изменений (само собой, кроме всех множителей). Без увеличения вспомогательных напряжений вручную система не готова к серьёзным экспериментам совершенно, впрочем, уже долгое время увеличение базовой представляет сугубо спортивный интерес и чаще служит проверкой для реакции плат на нерядовые события, но у нас их хватало и до этого участка экспериментов. Кнопка сброса настроек, выведенная на заднюю панель, мне пригодилась многократно.
Выше мы уже использовали как слегка сниженную, так и повышенную BCLK, а всё для доведения частоты ЦП до «предельной», и именно это на сегодняшний день от корректировки базовой и требуется ввиду целочисленных основных множителей системы. С небольшим отходом от штатных 100 МГц здесь нет никаких проблем.
Вывод
Над образом продукта потрудились основательно. И прежде на предшественнике, в лице MSI MEG Z490 Ace, мы видели хороший результат инженерных наработок, а здесь, с новым поколением процессоров и чипсетов, его только нарастили. Должное внимание досталось распределению современных линий PCI-E 4.0 между слотами x16 и M.2. Число последних увеличилось и за счёт прироста возможностей 11th Gen CPU. Появилась поддержка работы интегрированного видео и современный порт HDMI 2.0b на задней панели, а ещё в базе присутствует поддержка пары скоростных Thunderbolt 4. Всё это не затребовало упрощения схемы стабилизатора питания, а наоборот — он стал только сложнее. Готовность к работе платы со старшей моделью процессоров подтвердили тесты, два гнезда питания для этого здесь далеко не лишние. Имеется ряд дополнительных возможностей, что упрощали работу в ходе экспериментов, например, две микросхемы, где я проверял возможности на разных версиях микрокода, а ещё удобно было использовать для сброса настроек кнопку на задней панели.
Новые процессоры оказались вовсе не очередными тактическими «+100 МГц» в год любой ценой. Здесь есть много нового, над чем придётся работать всем производителям. Больше всего удивил делитель КП и оттого полная смена стратегии при разгоне ОЗУ. Возможности ядер процессора также не остались в долгу, заметен существенный прирост продуктивности при работе с векторными инструкциями AVX-512, а это вызывает резкий рост рабочих температур. Появление второй группы компенсирующих множителей пришлось как нельзя кстати. Разгон ЦП вполне реален, для более приземлённой нагрузки, и способов его проведения весьма немало. Важно получить контроль и над частотой ядер, и над уровнем напряжения. Над всем этим работа ведётся, в чём мы смогли убедиться во время проведения экспериментов. Физически плата готова к самым сложным нагрузкам, теперь дело за стратегией, тактикой, анализом и нужной схемой баланса между огромным числом переменных, которые доступны здесь в UEFI. Вместе с тем, становится понятно, что из Core i9-11900K целенаправленно был сформирован образ самого быстрого процессора в линейке настольных у компании Intel на сегодняшний день. Цена у этого, конечно, есть, и выражается она не только в аппетитах к энергосети, а и в необходимости иметь соответствующую материнскую плату, благо, тестовая модель тут не сплоховала.
На базе новой платы можно выстроить любую сборку: игровую, рабочую, мультимедийный центр — что угодно. Уже имеется ряд программных наработок для самой разной аудитории. Бонусы, конечно же, больше привлекут именно геймеров. Подготовку к выходу новой линейки процессоров в компании MSI явно не игнорировали и усиленно к ней готовились, результаты правильнее будет оценить, сопоставив их с конкурирующими. Учитывая новую реальность, особенно в области разгона ОЗУ, остаётся выбирать устройство по остальным аспектам, а тут прицепиться попросту не к чему: всё сделано на совесть и без каких-то явных просчётов, и поэтому я могу смело советовать добавить плату к списку своих желаний всех, кто завершающий цикл эпохи DDR4 решил встретить с продукцией от Intel.