Знакомство с технологией CUDA

В развитии современных процессоров намечается тенденция к постепенному увеличению количества ядер, что повышает их возможности в параллельных вычислениях. Однако уже давно имеются GPU, значительно превосходящие центральные процессоры в данном отношении. И эти возможности графических процессоров уже взяты на заметку некоторыми компаниями. Первые попытки использовать графические ускорители для нецелевых вычислений предпринимались еще с конца 90-х годов. Но только появление шейдеров стало толчком к развитию абсолютно новой технологии, и в 2003 году появилось понятие GPGPU (General-purpose graphics processing units). Немаловажную роль в развитии данной инициативы сыграл BrookGPU, который является специальным расширением для языка C. До появления BrookGPU программисты могли работать с GPU лишь через API Direct3D или OpenGL. Brook позволил разработчикам работать с привычной средой, а уже сам компилятор с помощью специальных библиотек реализовал взаимодействие с GPU на низком уровне.

Такой прогресс не мог не привлечь внимания лидеров данной индустрии – AMD и NVIDIA, которые занялись разработкой собственных программных платформ для неграфических вычислений на своих видеокартах. Никто лучше разработчиков GPU не знает в совершенстве все нюансы и особенности своих продуктов, что позволяет этим же компаниям максимально эффективно оптимизировать программный комплекс для конкретных аппаратных решений. На данный момент NVIDIA развивает платформу CUDA (Compute Unified Device Architecture), у AMD подобная технология именуется CTM (Close To Metal) или AMD Stream Computing. Мы рассмотрим некоторые возможности CUDA и на практике оценим вычислительные возможности графического чипа G92 видеокарты GeForce 8800 GT.

Но прежде рассмотрим некоторые нюансы выполнения расчетов при помощи графических процессоров. Основное преимущество их заключается в том, что графический чип изначально проектируется под выполнение множества потоков, а каждое ядро обычного CPU выполняет поток последовательных инструкций. Любой современный GPU является мультипроцессором, состоящим из нескольких вычислительных кластеров, с множеством ALU в каждом. Самый мощный современный чип GT200 состоит из 10 таких кластеров, на каждый из которых приходится 24 потоковых процессора. У тестируемой видеокарты GeForce 8800 GT на базе чипа G92 семь больших вычислительных блока по 16 потоковых процессоров. CPU используют SIMD блоки SSE для векторных вычислений (single instruction multiple data - одна инструкция выполняется над многочисленными данными), что требует трансформации данных в 4х векторы. GPU скалярно обрабатывает потоки, т.е. одна инструкция применяется над несколькими потоками (SIMT - single instruction multiple threads). Это избавляет разработчиков от преобразования данных в векторы, и допускает произвольные ветвления в потоках. Каждый вычислительный блок GPU имеет прямой доступ к памяти. Да и пропускная способность видеопамяти выше, благодаря использованию нескольких раздельных контроллеров памяти (на топовом G200 это 8 каналов по 64-бит) и высоких рабочих частот.

В целом, в определенных задачах при работе с большими объемами данных GPU оказываются намного быстрее CPU. Ниже вы видите иллюстрацию этого утверждения:

NVIDIA CUDA


На диаграмме изображена динамика роста производительности CPU и GPU начиная с 2003 года. Данные эти любит приводить в качестве рекламы в своих документах NVIDIA, но они являются лишь теоретической выкладкой и на самом деле отрыв, конечно же, может оказаться намного меньше.

Но как бы там ни было, есть огромный потенциал графических процессоров, который можно использовать, и который требует специфического подхода к разработке программных продуктов. Все это реализовано в аппаратно-программной среде CUDA, которая состоит из нескольких программных уровней - высокоуровневый CUDA Runtime API и низкоуровневый CUDA Driver API.

NVIDIA CUDA


CUDA использует для программирования стандартный язык C, что является одним из основных ее преимуществ для разработчиков. Изначально CUDA включает библиотеки BLAS (базовый пакет программ линейной алгебры) и FFT (расчёт преобразований Фурье). Также CUDA имеет возможность взаимодействия с графическими API OpenGL или DirectX, возможность разработки на низком уровне, характеризуется оптимизированным распределением потоков данных между CPU и GPU. Вычисления CUDA выполняются одновременно с графическими, в отличие от аналогичной платформы AMD, где для расчетов на GPU вообще запускается специальная виртуальная машина. Но такое «сожительство» чревато и возникновением ошибок в случае создания большой нагрузки графическим API при одновременной работе CUDA - ведь графические операции имеют все же более высокий приоритет. Платформа совместима с 32- и 64-битными операционными системами Windows XP, Windows Vista, MacOS X и различными версиями Linux. Платформа открытая и на сайте, кроме специальных драйверов для видеокарты, можно загрузить программные пакеты CUDA Toolkit, CUDA Developer SDK, включающие компилятор, отладчик, стандартные библиотеки и документацию.

Что же касается практической реализации CUDA, то длительное время эта технология использовалась лишь для узкоспециализированных математических вычислений в области физики элементарных частиц, астрофизики, медицины или прогнозирования изменений финансового рынка и т.п. Но данная технология становится постепенно ближе и к рядовым пользователям, в частности появляются специальные плагины для Photoshop, которые могут задействовать вычислительную мощность GPU. На специальной страничке можно изучить весь список программ, использующих возможности NVIDIA CUDA.

В качестве практических испытаний новой технологии на видеокарте MSI NX8800GT-T2D256E-OC мы воспользуемся программой TMPGEnc. Данный продукт является коммерческим (полная версия стоит $100), но к видеокартам MSI он поставляется в качестве бонуса в trial-версии сроком на 30 дней. Скачать данную версию можно и с сайта разработчика, но для установки TMPGEnc 4.0 XPress MSI Special Edition необходим оригинальный диск с драйверами от карты MSI - без него программа не инсталлируется.

Для отображения максимально полной информации о вычислительных возможностях в CUDA и сравнения с другими видеоадаптерами можно использовать специальную утилиту CUDA-Z. Вот какую информацию она выдает о нашей видеокарте GeForce 8800GT:

NVIDIA CUDA

 

NVIDIA CUDA

 

NVIDIA CUDA


Относительно референсных моделей наш экземпляр работает на более высоких частотах: растровый домен на 63 МГц выше номинала, а шейдерные блоки быстрее на 174 МГц, память - на 100 МГц.

Мы сравним скорость конвертации одного и того же HD-видео при расчетах только с помощью CPU и при дополнительной активации CUDA в программе TMPGEnc на следующей конфигурации:

  • Процессор: Pentium Dual-Core E5200 2,5 ГГц;
  • Материнская плата: Gigabyte P35-S3;
  • Память: 2х1GB GoodRam PC6400 (5-5-5-18-2T)
  • Видеокарта: MSI NX8800GT-T2D256E-OC;
  • Жесткий диск: 320GB WD3200AAKS;
  • Блок питания: CoolerMaster eXtreme Power 500-PCAP;
  • Операционная система: Windows XP SP2;
  • TMPGEnc 4.0 XPress 4.6.3.268;
  • Драйвера видеокарты: ForceWare 180.60.


Для тестов процессор разгонялся до 3 ГГц (в конфигурации 11,5x261 МГц) и до 4 ГГц (11,5x348 МГц) при частоте оперативной памяти 835 МГц в первом и втором случае. Видеоролик в разрешении Full HD 1920х1080 продолжительностью одну минуту двадцать секунд. Для создания дополнительной нагрузки включался фильтр шумоподавления, настройки которого оставлены по умолчанию.

NVIDIA CUDA


Кодирование осуществлялось с помощью кодека DivX 6.8.4. В настройках качества этого кодека все значения оставлены по умолчанию, multithreading включен.

NVIDIA CUDA


Поддержка многопоточности в TMPGEnc изначально включена во вкладке настроек CPU/GPU. В этом же разделе активируется и CUDA.

NVIDIA CUDA


Как видно по приведенному скриншоту, активирована обработка фильтров с помощью CUDA, а аппаратный видеодекодер не включен. В документации к программе предупреждается, что активация последнего параметра приводит к увеличению времени обработки файла.

По итогам проведенных тестов получены следующие данные:

NVIDIA CUDA


При частоте процессора 4 ГГц с активацией CUDA мы выиграли всего пару секунд (или 2%), что не особо впечатляет. А вот на более низкой частоте прирост от активации данной технологии позволяет сэкономить уже около 13% времени, что будет довольно ощутимо при обработке больших файлов. Но все равно результаты не столь впечатляющие, как ожидалось.

В программе TMPGEnc есть индикатор загрузки CPU и CUDA, в данной тестовой конфигурации он показывал загрузку центрального процессора примерно на 20%, а графического ядра на оставшиеся 80%. В итоге у нас те же 100%, что и при конвертации без CUDA и разницы по времени вообще может и не быть (но она все-таки есть). Небольшой объем памяти в 256 MB так же не является сдерживающим фактором. Судя по показаниям RivaTuner, в процессе работы использовалось не более 154 MB видеопамяти.

NVIDIA CUDA



Выводы


Программа TMPGEnc является одной из тех, кто вводит технологию CUDA в массы. Использование GPU в данной программе позволяет ускорить процесс обработки видео и значительно разгрузить центральный процессор, что позволит пользователю комфортно заниматься и другими задачами в это же время. В нашем конкретном примере видеокарта GeForce 8800GT 256MB незначительно улучшила временные показатели при конвертации видео на базе разогнанного процессора Pentium Dual-Core E5200. Но отчетливо видно, что при снижении частоты увеличивается прирост от активации CUDA, на слабых процессорах прирост от ее использования будет намного больше. На фоне такой зависимости вполне логично предположить что и при увеличении нагрузки (например, использование очень большого количества дополнительных видео-фильтров) результаты системы с CUDA будут выделяется более значимой дельтой разницы затраченного времени на процесс кодирования. Также не стоит забывать, что и G92 на данный момент не самый мощный чип, и более современные видеокарты обеспечат значительно более высокую производительность в подобных приложениях. Однако в процессе работы приложения GPU загружен не полностью и, вероятно, распределение нагрузки зависит от каждой конфигурации отдельно, а именно от связки процессор/видеокарта, что в итоге может дать и больший (или меньший) прирост в процентном соотношении от активации CUDA. В любом случае, тем, кто работает с большими объемами видеоданных, такая технология все равно позволит значительно сэкономить свое время.

Правда, CUDA еще не обрела повсеместную популярность, качество программного обеспечения, работающего с этой технологией, требует доработок. В рассмотренной нами программе TMPGEnc 4.0 XPress данная технология не всегда работала. Один и тот же ролик можно было перекодировать несколько раз, а потом вдруг, при следующем запуске, загрузка CUDA уже была равна 0%. И это явление носило совершенно случайный характер на абсолютно разных операционных системах. Также рассмотренная программа отказывалась использовать CUDA при кодировании в формат XviD, но с популярным кодеком DivX никаких проблем не было.

В итоге пока технология CUDA позволяет ощутимо увеличить производительность персональных компьютеров лишь в определенных задачах. Но сфера применения подобной технологии будет расширяться, а процесс наращивания количества ядер в обычных процессорах свидетельствует о росте востребованности параллельных многопоточных вычислений в современных программных приложениях. Не зря в последнее время все лидеры индустрии загорелись идеей объединения CPU и GPU в рамках одной унифицированной архитектуры (вспомнить хотябы разрекламированный AMD Fusion). Возможно CUDA это один из этапов в процессе данного объединения.

Крови необходим адреналин!